System Identification Toolbox Release Notes

Contents

Summary by Version 3
Version 6.1.3 (R2006a) System Identification Toolbox 6
Version 6.1.2 (R14SP3) System Identification Toolbox 8
Version 6.1.1 (R14SP2) System Identification Toolbox 9
Version 6.0 (R13SP2) System Identification Toolbox 10
Compatibility Summary for System Identification Toolbox 13

Summary by Version

This table provides quick access to what's new in each version. For clarification, see About Release Notes.

Version (Release)	New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Latest Version V6.1.3 (R2006a)	Yes Details	Yes Summary	Bug Reports at Web site	Printable Release Notes: PDF V6.1.3 product documentation
V6.1.2 (R14SP3)	No	No	Bug Reports at Web site	No
V6.1.1 (R14SP2)	No	No	Fixed bugs	No
V6.0 (R13SP2)	Yes Details	Yes Summary	No bug fixes	V6.0 product documentation

About Release Notes

Use release notes when upgrading to a newer version to learn about new features and changes, and the potential impact on your existing files and practices. Release notes are also beneficial if you use or support multiple versions.

If you are not upgrading from the most recent previous version, review release notes for all interim versions, not just for the version you are installing. For example, when upgrading from V1.0 to V1.2, review the New Features and Changes, Version Compatibility Considerations, and Bug Reports for V1.1 and V1.2.

New Features and Changes

These include

• New functionality

- Changes to existing functionality
- Changes to system requirements (complete system requirements for the current version are at the MathWorks Web site)
- Any version compatibility considerations associated with each new feature or change

Version Compatibility Considerations

When a new feature or change introduces a known incompatibility with the previous version, its description includes a **Compatibility Considerations** subsection that details the impact. For a list of all new features and changes that have compatibility impact, see the Compatibility Summary for System Identification Toolbox.

Compatibility issues that become known after the product has been released are added to Bug Reports at the MathWorks Web site. Because bug fixes can sometimes result in incompatibilities, also review fixed bugs in Bug Reports for any compatibility impact.

Fixed Bugs and Known Problems

MathWorks Bug Reports is a user-searchable database of known problems, workarounds, and fixes. The MathWorks updates the Bug Reports database as new problems and resolutions become known, so check it as needed for the latest information.

Access Bug Reports at the MathWorks Web site using your MathWorks Account. If you are not logged in to your MathWorks Account when you link to Bug Reports, you are prompted to log in or create an account. You then can view bug fixes and known problems for R14SP2 and more recent releases.

The Bug Reports database was introduced for R14SP2 and does not include information for prior releases. You can access a list of bug fixes made in prior versions via the links in the summary table.

Related Documentation at Web Site

Printable Release Notes (PDF). You can print release notes from the PDF version, located at the MathWorks Web site. The PDF version does not support links to other documents or to the Web site, such as to Bug Reports. Use the browser-based version of release notes for access to all information.

Product Documentation. At the MathWorks Web site, you can access complete product documentation for the current version and some previous versions, as noted in the summary table.

Version 6.1.3 (R2006a) System Identification Toolbox

This table summarizes what's new in V6.1.3 (R2006a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	Bug Reports at Web site	Printable Release Notes: PDF V6.1.3 product documentation

New features and changes introduced in this version are

- balred Introduced for Model Reduction
- Search Direction for Minimizing Criteria Can Be Computed by Adaptive Gauss-Newton Method
- Maximum Number of Bisections Used by Line Search Is Increased

balred Introduced for Model Reduction

Use balred to perform model reduction instead of idmodred.

Compatibility Considerations

idmodred is now obsolete. Please use balred instead.

Search Direction for Minimizing Criteria Can Be Computed by Adaptive Gauss-Newton Method

An adaptive Gauss-Newton method is now available for computing the direction of the line search for cost-function minimization. Use this method when you observe convergence problems in the estimation results, or as an alternative to the Levenberg-Marquard (1m) method.

The gna search method was suggested by Adrian Wills, Brett Ninness, and Stuart Gibson in their paper "On Gradient-Based Search for Multivariable System Estimates", presented at the IFAC World Congress in Prague in 2005. gna is an adaptive version of gns and uses a cutoff value for the singular values of the criterion Hessian, which is adjusted adaptively depending on the success of the line search.

Specify the gna method by setting the SearchDirection property to 'gna'. For example:

```
m = pem(data, model structure, 'se', 'gna')
```

The default initial value of gamma in the gna search is 10⁻⁴. You can set a different value using the InitGnaTol property. For more information about SearchDirection, see the Algorithm Properties reference pages.

Maximum Number of Bisections Used by Line Search Is Increased

The default value for the MaxBisections property, which is the maximum number of bisections along the search direction used by line search, is increased from 10 to 25. This increases the number of attempts to find a lower criterion value along the search vector.

For more information about Search properties, see the Algorithm Properties reference page.

Version 6.1.2 (R14SP3) System Identification Toolbox

This table summarizes what's new in V6.1.2 (R14SP3):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
No	No	Bug Reports at Web site	No

Version 6.1.1 (R14SP2) System Identification Toolbox

This table summarizes what's new in V6.1.1 (R14SP2):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
No	No	Fixed bugs	No

Version 6.0 (R13SP2) System Identification Toolbox

This table summarizes what's new in V6.0 (R13SP2):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems	Related Documentation at Web Site
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	No bug fixes	V6.0 product documentation

New features and changes introduced in this version are

- idproc Model Object Added
- Estimation and Validation in Frequency Domain Now Supported
- Continuous-Time Data Can Now Be Stored Using Frequency-Domain Objects
- Simulink Now Supports iddata and idmodel Objects
- advice About Data and Models Now Available
- theta Models No Longer Supported

idproc Model Object Added

A new model object, idproc, is used to represent simple continuous-time process models. This object is characterized by static gain, possible dead time, and dominating time constant(s). A new GUI that supports this object is available in the System Identification Toolbox window.

To learn more about this object, type iddemopr at the MATLAB prompt to run a demo.

You can also try the command

```
m = pem(data, 'p1d')
```

Estimation and Validation in Frequency Domain Now Supported

You can now perform estimation and validation using frequency-domain data, such as the following:

- Inputs and outputs, entered as frequency-domain data in the iddata object
- Frequency-response data from a frequency analyzer

Both the System Identification Toolbox functions and the graphical user interface (GUI) support this.

All estimation, simulation, and validation routines accept frequency-domain data and frequency-response data as inputs, similar to time-domain data. The frequency-response data must be packaged as an frd or idfrd object.

Use the fft/ifft functions to transform between the time and frequency domains. Use the spafdr function to estimate frequency responses using frequency-dependent resolution.

Type at the MATLAB prompt:

```
help iddata
or
idprops data
```

for complete descriptions. To access a demo, type iddemofr.

Continuous-Time Data Can Now Be Stored Using Frequency-Domain Objects

You can now store continuous-time data as a frequency-domain data object. Continuous-time Fourier-transformed data is now stored at a finite number of arbitrary frequencies, letting you estimate continuous-time models directly. For example, type at the MATLAB prompt:

```
help oe
```

Simulink Now Supports iddata and idmodel Objects

You can now simulate estimated models using Simulink. The iddata and idmodel objects from the System Identification Toolbox are now compatible with Simulink.

The command slident opens a Simulink block library, which you can use to simulate any idmodel (with or without noise). This library also contains data sources and sinks for iddata objects.

advice About Data and Models Now Available

Use the new advice command to get helpful tips about the quality, problems, and options associated with an iddata or idmodel object.

For more information, type at the MATLAB prompt:

help iddata/advice

and

help idmodel/advice

theta Models No Longer Supported

Theta models (matrices) are no longer supported.

Compatibility Considerations

Existing code that uses functions, such as th2par and th2ss, to access the theta model data will continue to work in the System Identification Toolbox 6.0. However, if you have code that directly indexes into the theta matrix (e.g., th(1,3)), this code will no longer work.

Compatibility Summary for System Identification Toolbox

This table summarizes new features and changes that might cause incompatibilities when you upgrade from an earlier version, or when you use files on multiple versions. Details are provided with the description of the new feature or change.

Version New Features and Changes with Version (Release) Compatibility Impact	
Latest Version V6.1.3 (R2006a)	See the Compatibility Considerations subheading for this new feature or change: • balred Introduced for Model Reduction
V6.1.2 (R14SP3)	None
V6.1.1 (R14SP2)	None
V6.0 (R13SP2)	See the Compatibility Considerations subheading for this new feature or change: • theta Models No Longer Supported